The boundary element formulation for multiparameter structural shape optimization
نویسندگان
چکیده
منابع مشابه
OPTIMIZATION FORMULATION FOR NONLINEAR STRUCTURAL ANALYSIS
In this paper, the effect of angle between predictor and corrector surfaces on the structural analysis is investigated. Two objective functions are formulated based on this angle and also the load factor. Optimizing these functions, and using the structural equilibrium path’s geometry, lead to two new constraints for the nonlinear solver. Besides, one more formula is achieved, which was p...
متن کاملA General Boundary Element Formulation for The Analysis of Viscoelastic Problems
The analysis of viscoelastic materials is one of the most important subjects in engineering structures. Several works have been so far made for the integral equation methods to viscoelastic problems. From the basic assumptions of viscoelastic constitutive equations and weighted residual techniques, a simple but effective Boundary Element (BE) formulation is developed for the Kelvin viscoelastic...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملBoundary Element Formulation of Harmonic Coordinates
We explain how Boundary Element Methods (BEM) can be used to speed up the computation and reduce the storage associated with Harmonic Coordinates. In addition, BEM formulation allows extending the harmonic coordinates to the exterior and makes possible to compare the transfinite harmonic coordinates with transfinite Shepard interpolation and Mean Value Coordinates. This comparison reveals that ...
متن کاملShape optimization for free boundary problems
In this paper three different formulations of a Bernoulli type free boundary problem are discussed. By analyzing the shape Hessian in case of matching data it is distinguished between well-posed and ill-posed formulations. A nonlinear Ritz-Galerkin method is applied for discretizing the shape optimization problem. In case of well-posedness existence and convergence of the approximate shapes is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 1985
ISSN: 0307-904X
DOI: 10.1016/0307-904x(85)90007-1